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Abstract  been long known in certain f i e lds  (e . g . ,  geophys—
ical data pa erasing (.11 and np~ och cr~~press tor ~

Recursivo a1~ or i thms for the solution of u n —  studies [5]) th a t  recursIve solutions can be oh—
it’ i—s q ares est ii : ia t  Ion problems have boon tam ed for the predic t ion  of stationary processes .

based !~.. t i!I ly on s ta t e—sp a ce  raodola . It has boon In par t icular , the so—called L~vinson algor i thm
knorn , however , t h a t  such nigorithas exist for computes the optimal—pred ictor in 0(52) operatiOns .
sta t ionary  t i r o— s e r  .05 , using input—output do—
ne r ipt ions (e.g. • covartance ma t r i ce s ).  We in— It has seemed in the past that the prediction
troduco a ~ay of c lass i fy ing  stochastic processes of r .onstat ion ary processes would require 0(N 3) op—
~n terms of their  “distance ” from s tat ionar i ty  orations unless we can impose a s ta te—space struc—
that leads to a derivation of an effIc i en t  L~ vin— turo on the signal .and noise processes . Eowevor ,
son—type algorithm for a rb i t ra ry  (nonsta t ionary)  it is not unreasonable to expect that  between the
processes. By adding structure to the covariance highly structured Toeplitz ma t r ix  (or s t a t i o n a r y
t iut r ix , these general results specialize to state— process) and a compl.ately arbitrary covariance m.t—
space type estimation algorithr s . In particular , tr ix , there should exist  ma t r i ces  (or processes)
the Chandrasekhar equations arc shown to be the with varying degrees of s t ruc tu re  and tha t  t h i s
natural descoitciant s of the T~ vInson a lgor i thm.  structuro could be somehow u t i l i zed  in reducing

the amount of computation involved in the o st i :~a—
tion problem . That this is ir.deed possible has
been f i r s t  shown in [6] by in t roducing the concept

1. Introduction of “shift (low) rank ,” see also [7—9] , and Subse-
quently in [10,11]. These results were motivated

The problem of linear least squares estima— for discrete—tine problems by the work of Levir.son
tion bws been studied extensively and various [14] and Golub [18], and for continuous-time by
r.cthod5 of solutIon have boon developed . These the cltandrasckhnr—typo equations and their further
may be classified into estimation algorithms do— developments in [12 ,13].
rived from input—Output  data or froa other “ex-~
ternal” syatem descriptions and algorithms derived In this paper we shall introduce a, an Index
from state—space or “ internal ” models . In the last of “distance Iron s tat i o nar i t y ” of an a r b i t r a r y
decade the field of linear least—squares es t ima— nonstat ionary process. We shall show how i .ccur—
tion has been dominated by s ta te—est imat ion , in sivc solutions requiring of order C~~~ opera t ions
particular by the recursive Ka lman—Ducy f i l t e r  can be obtained for such processes wi th  or wi thou t
nigoritha and its various versions , which rely assuming a s ta te—space s t ructure . In the s t a t i on—
heavily on the avail abil i ty of state—space models . nry case our solution reduces to known a lgor ith . Ts

given in [14 ,15].
In many applications , hos~ver , a state—space

model is not readily avai lable , and it would be Final ly ,  we shall show that , if the not nec—
preferable to have algor ithms that  use d i rec t ly  essaril y s t a t iona ry  processes are known to cone
the covariance informat ion o~ the ob3erved pro— from state—space models , then this a d d i t i on a l
yeas • The solution of the est tnat ion problem is s t ruc tura l  in fo rm at ion  can be used to re~~u c a  our
closely related to the problem of invert ing the general  so lu t ion  a l g o r i t hm  to the previously  kna a~
covarianco mat r ix . Therefore , the ccraputational C l t a n d m a s ek h a r — t ’p o  e q u a t i o n s .  This rr.eazi~ t t w a
e f f i c ie ncy of o~; c tmation a lgo r i thn ~i i:; st rongly have been able to properly I:; bcd the s t a t e — s p a c e
dependen t on the a r o un t  of computation required assumption into  a genera l  i np u t — o ut p u t  i r . e.~j :~k .
for inver t in g  an appropriate natrix. For j im —

~~~t ra t ion  we shal l  ment ion  the important  example
of a ~;t a t  onnry  process and i ts  Toep l it z—type  2. ~ General Linear l:a~~inat ion Problem

o~,ar i ,r .co T a a t r ix .  I t  !taa i p~:, ,. : ,;hosfl [1—3 t h at
a of the a p~’c isi s t ructur e  of an N x N ~Ve sha ll  eon.; ider t h e  i~~o~ 1cm of ea t i .i t i :~ r a

~~~~‘ne pl I tz rim Ii Ix , i t  can be t n vc i  L~~Li i n 0 ( N )  op— ~t o c h a ut  Ic t i l c i : . ,.; x( • ) f;~ ohaerva I. i r  of a
era I in n:; ( vu  L I  I p1 Ic~ I Io n ;  und a<hI i t  i o n ; ) ,  ronpared Sc 1.1 ted ) ( ( ‘;‘ .: ; v C • ) . IA ~L y ( . ) ( p—M I i : u c. . ~ ‘ :a

~~~~n 0(N ~ ) r p c r u  I. b o a  r e qu i t ed  in :oiicra 1 for  the oi~ I x( . ) ( it ~-d b :ia j , u ’ u u  1) l y e  covar  l .ut l ( ( ’  i t  I I —

~~~~ nvcrc Ion c, f an orb I t r ar y  va ir  ix • It hn: ; at ao  cos

7 
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r
R N 

= ~r j j ]  o ~ i .~ < N  ; r
1J =E Y 1y~ or in mat r ix  form

~ r xy 1 xy H
N ~N 

= 1~N (4)

~~ Lni,~j 
0 ~ i .~ ~ N ; ~~~~~ =E X 1Y~

The besps~~nea r leas t square s estimate of ~ 
0 5 i1J ~ Nxy —

given p~~~ t y ~~, 0 < I < N — i )  has the form

The last two ma t r ix  equations i l lustrate  the fact
N-i that solving the estimation problem is closely re—

~ (N IN — 1) = h (N ,i) y1 
. latod to the problem of inverting the covariance

XY matrix , since for both no lu t ions  of the predic-
tion— and the smoothing—problem we get

The optimal one-step ahead predictor h
~ 

(N ,~ ) can
be determined by using the well known or~

’
hogonal— xy

ity condition on the prediction error h
N 

= 
[
~N_l]~~ [r

xN , ..., r
N~~~l] ~~xy

x
N

_
~~

(N
~
N _ l ) 1y

k ; 0 < k < N - i

11
N 

= RN f1~N1 —l (6)
xy xyL J

~ t1ch means

N-i
1’o = E
~~(xN

_ x (N !N_ l)) Y~]=r~
3’
k

_
~~~ h,~,(N ,i) rl k  

3. Structural Assumptions

To aid In specifying the structura l assurnp-
tions , we shall introduce some notation for the

or in matrix form “shifted-difference” operators §1.) and Jf~]

h
N 
R
N_i 

= 
r ~~ ~~ 1 

that play a central role in this paper.
(1)xy LrN,oP •~~~ •I  rN,N_lJ ‘ 

~~~~~~~, 

-

where h~~ ~ fhxy (N ,0)....,hxy (N
~N~~

i)]
~ 

an nxNp 
~~ 

, ~ < ~~~~~ < Nmatrix.

Note that by setting x = y,  we get an equa— where s1 j  are p x p  matrices ( i . e . ,  S is a
tion defining the predictor h(•,•) of the ob— block matrix). Then define
served process itself , i.e.,

S
N—i rs1,1 ~l,

N] [ 30,v 0,N-i 1
~(NJN — 1) = h(N,i) y1 , b(s) — ]1=0

therefore L~N ,1 9
N,N 

5N l ,0 ‘ 
5
N—l ,N—i

hNR
N 1  

= {rN O ~ 
... , rN N_ lj 5 (2)

[0 ,0 ~0,Nl r-°~ 1
This can be rewritten as : j — I

~_h
N
,I] R

N 
= [0, ... , 0,E] , (3) [SN O  5

N ,N I 0:I ’  :

where E is deternined by the le f t—hand side of L 5N—l ,0 
5
N—l ,N— lJ

this  equation . For c st i ma t in g  x ( .)  at n t imo
ins tant  w i t ht h  the observat ion interva l (0 ,N ) ,  wo rsOLO: 

— 
_~~ ,N1

H ( . , .;N) , whcre 
b(s )xy I

have to find the optima l f i l t e r  (smoother) 
= 

I —j
N 

LsN ,O :
~ (k !N )  = H (k , i ; N ) y1

i=0
We can now define the (block) displacenont rank ~

Using the or th ogon al i t y  con dition again , now on the of m at r i x  S as
form

a~~~Irank 5(S)/pl
xk x ( k ! N ) i Y i , 0 < i < N

whore
we get

N
hi (k , i ~

) r = r
’
~
” 

, 0 < ke < N rxl ~ ~;i~allc~ t inte~ cr In , such tha t n ~xy 1 ,0 k ,e —

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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kemark s  ‘ Wo can now proceed in solving a general esti-
mation problem by s ta t ing  our assumpt ions  on the

1. 1f~~ p I ( i. e . ,  when S has scaler entrios) crosscovarianco R
then XY ’

a = rank b (S] . § (R I = P ~ 1” (8)
xy i~y

2 . When S is a Toeplitz matrix , then b(s) = 0 where F Is a N a X ap  matr ix .and therefore a = 0. If S is an arbitrary xy
matr ix , 5(s J may be full rank and then a
N. Therefore , a is bounded by 0 < a < N , Note tha t  If the processes x ( • )  and y ( • )

and the actual value of a is an In~ex ~ 
are jo in t ly  s t a t i o n a r y ,  then

“distance from ata t ionar i ty  of the matrix S.
b[R 1 = 0 , btrt )= 0 , p = 0 , P = 0 .

xy xy
Examples

The mot ivat ion behi nd this asa umpt ion is that
Let T be a full  ToeplItz matr ix  and Li (U j ) in many problems the signal x ( )  and the obser—

be lower (upper) Toeplitz matrices . vations y (~ ) are connected by a linear relation
of the form

Ci) s = w  , c r < l
y1 

= Hx 1 + V
1 

= Z~ + V
1 

(9)

It can be shown (check for a 3 x3 case) that ,
where v ( S )  is white noise with unit  in tensi ty ,

J(Lu ] = lu ’ ‘uncorrelated with x( ) .  In this case ,

s-here 1 is the first column of L and U’ Is ~~~~ = Ey
1y~ = Ez

1
z~ + I = Ez

1
y~ + I •

the f i rs t  row of U. Therefore , rank fLU] is
at most p . H

~x Y + I 8 = Rr~~
’
~ + I . b~~~ (10)= 1:1 i,j

(ii) S = T , a < 2
(0 i i ~~j

For Tooplitz matrices b [T ] = 0, and in J[TI ~~~~ = 
=only the f i rs t  row and column may be nonzero .

( i i i )  S = U . L , cI < 3 • and 
~‘c)’ 

will indeed sa t i sfy  the nsstunption (8).
As a matter of fact ,

(iv) S = T 1
T
2 , 

a < 4 ..
R = diag (H) R + Ixy

k

s L1
U~. a < k • and by operating with b ( .]  on both sides we get

P = d i a g  (H) P

Since the matr ix  8(s ) has a rank < a • p (by
the def in i t ion  of a) ,  we can always factor it
(nor.uniq~zoly) as —

4. The Levinson— Typo Al gori thm for
5 (S) = ~ 

the Joint (x,y) Process

Using the assumptions stated in the previous
with a signature matrix E and F1, P2 being section on the covariance information , se can now
N p X~ p (block) matrices , give a set of recursions for computing

xy

If S is a symmetric ma tr ix , so is 5(s) . 
h
m+l 

— [ In 1 + E M~~ Bm 
, h~ 

X~’ —l
In this case , a (nonunique ) symmetric decompo si— xy 

— 0
~
h
xyj ~n in xy — r10

r00 (h a)

t ion can always be found of the form

10 1 r8ml
— I I M 1

C’ , A° = I (llb)b[s] = P E P ’ ( i . e . ,  F1 = P2
) (7) A~~’~ = LAmi Lo j m m

where E is aga in the s ignature  matr ix .

The question of how to f i nd  t h i s  decompos i— B
In
~~ = 

~B
m] 

10 1
- L N~~C , B

0 
= [i ,0,...,01

tion and .r ur t her  details abo u t the  d i s p lac em e n t  0 in m 
(li~~rank a can be found in [10 ,11]. Fur our present

d iscu~ s ion it su f f ices to know t h a t  given an ar-
b i t r a r y  e ov a rl an cc  matrix R of an observed pro— — l

N = N  - C ’.’ c ’ N0 = r0 0  
(12a )

ce~~. y( •), ~e can as~ociatc w i t h  it a numb er ci m+l m In
a nd a ;~ Np x . p  ~~ t r 1 r .  P such t h at  5 (n l  i’~~ p .

M = M  — C ” ~ C
,;:~ i ; ~’. rt~u t  r x a r  ;~~c t h a t  f u r t her  ii 1u~.t r a te s  thc — l 

= 

~~~~ 

( 12b )
r.~ an i r ~: of a and P w i l l  be p r e sent ed  in Sec. 5. ia+1 rn m a a

F 
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1)e f t  ne ( y  -i- I )p and i i p  ( the  s iso o I’ 11m ) •  t t i  wit teh i  case Hilt is the sinco t h i n g  l i i  ter ‘for Cs —

1.1 
~; p }• CThi~- ti is , t t : ,  L t i i t s  Oh’ h 5~~, ~~ ‘ ‘ . iii ’ •s•  ~~~

, ~ 
SF0 t hilSI t ilI ~ y0 gi ven (y 1, 1 < I N ) ,  or III tht~

n X~~, (~ +p )  ~ p ,  (~V + p )  X~~, p x p ,  E~ ~~~~ , n X~~, ui t d  case also the ~o—c~llod bacicw ~ rd predictor” £1O~
P ~ ~~~, ros hk’c t Ively. The qua i i i  It  los E11, , C~ have 20]
to be com puted at each step by

Recurs ive  solut ions  of th is  ty pe weie  d e v c l —
oped f o r  the  s t a t i on a r y  case by Lov i imson (1.1 ] forFro ,o 0 1 xy xy comm iiut jug It ( , ) and by Wi~’~ iits and Robin son

E L ~ ii : I
in i xyj~ • 

~ 
j mn+i ,~~ ~

‘) ni ~‘i 
(~~ 3) ~~~~~ ~~~ c0t~p tuu1ng lt xy ( , ‘)  . Ind~~~1 , w1~cn v-c

take (C 0 , p 0 tUb equations ( l ib )  , (lic),
1~L ~~ ~ Ej (12) reduce to the Levinson  algorithm and (11) ,

(12) can be shown to be equivalent to the equa-
tions of Wigg ins and Robinson . Thu s , the station—

rr 0 0
r ii 0

C ~0 A’ CI 

] 

ary case Is nicely imnboddcd in our framework .

in L
5. St a te Space Stru cturo and

1,0L Chandr asekhar— Typ e Equations

...
~~ 

r
51~1 

1 ~m 
— H11, (14) The results described so far are quite gem—ntJ ora l ami d do nut. require mm s ta te  space s t r t t ctur c .

We shall now show how by imposing more s t ructure
wher e p~~, p~~

’ are the math block i-ow of P , p XY , on the covariunce matrices , the Chan dr a sekh ar—typo
respectively, and equations can be derived from the [~vinson—type

~1 equation presented in the previous section .

Let y ( ’)  and x(-) be the output and theE~i 
state vectors of a linear system dr iven by white
noise , i . e . ,  -

By counting the number of operations required Xj~f1 
F~X~ + U

1
at the mth step of the recursion , we get (assuming (17)

p ~< and ignoring terms according ly)  (2n +3 p) i~~ 
= ff~x~ + V 1

IIImultipl icat ions. Finding h ,~~ will  therefore re—
quire —(1 .5 + n/p)n~ Q mult ip l i ca t ions .  The proof Eu U ’ = Q Sj I i ,j  ‘ Ev 1v; = Ib j , jof the rocursioims above is somewhat lengthy and
is given in Appendix A. It is however ,
important  to note that  the auxiliary quantities 

Eu
1
v~ Ex

0
u~ = 0

~~~~~ ~~ also obey the following equations .
In this case ,

= 0 I ~~5) 
where 

Ex11y = F~ (Ex
1Y ’~) + EU~ Y~

RmAm [0 

1
the l ast term j q  zero ln r  > -j .  Thernfoj-e .

N I  
—

xy 
— 

xyr — F r  . , i > j  . (15)
i+1,j I i,j —

ft
mB

ImI
I. h l =r; :m_ l 

. as already noted earlier ,

(16) 

Alco , 

~~~~~~ ~ ~~~~~ ~~~~~

m ] r — H r + lb . (19)— 
xy

In the following discussion , we ~hahl there foreThe first equation implies that SS5USlC tha t  U , ~xy oboy assumptions  (18) , ( 19)
wbich are somewhat weakar than the s ta te—space a s—

Am 
= Eh

m
,I]~ 

sumption above .

so that  Am Is j ust the opt imal  predictor defined 
The opt imal filter ~~~~~~~~ 

was shoea~ to
obey equation ( 1) .  Therefore ,

in the previous section . Note also that in the
stationary caso

xy
h (t+ 1 , i) r~~ 5 = 1 t +h ,s

M l  15.0
m l

9R 1 1  
= [

~ 
j xy ~~~~ 

‘t ,s
h (t , i)  r

L 
_ _  _ _ _ _



f Subtra~ tiiig these last equations and using (IS) , and from the Levin son recursions (Ih a) , (li c) for
WI) got h and H we havoxy
t—l —1 t
‘

~~ 
(t +l ,i) — h (t , i) 1 r + h (ti-i , 

h (t+1 ,t )  = ~ (t ,t—i) + EtM
~ (~)t ) r  X3 xy

f b  I xy xy J i ,s Xy t ,s

= —N~~1C~~1 , B~~= the last block row ofxy
— r ’

~~ = (F . - I) rt+1 , s t ,s t t , s
or 

so that

h (t +1 ,t )  h (t ,t— 1) — E  M 1E
~~i

H $ N
t
1
1 . (23)y xy

~~~ 
[ln (t-i.i , i) — h (t ,i)’ r

— 
xy xy J t ,s

Th is recurs ion can be rewritten in another form
that Is easier to compare with the usual Chandra—

= 

~ 
— I — h ~~,(t +1,t)  H ~, r’~

’ sekhar equations ,
t /  t ,s

h (ti-i
and by comparison with (1) 

,t )  Nt = h (t , t— l)  N — FE E’ H ’xy t—1 ti-i ti-I t-i.

(24)
h (t÷1 , t ) — h (t , i)xy xy

Tho necessary algebra to derive this from (23) is
= 

(
~ — I — ii (t÷1 , t )  ~ h (t , i) given in Appendi x B.

xy t j xy
or In Appendix C we shall also prove tha t

h (t+1 ,1) = (F — h  (t+1,t) H ) Ii (t , i) . (20) Et = (F — h (t ,t—l)  H) Et ixyxy \t  xy t xy .

Using the estimator equation Fina l ly ,  note tha t  (12) ,  (21),  (25) pr ovIde  a con—
ploto set of recursions for computing h 5~ ( t÷l , t ) ,
which arc of the Citamtdras elvhar— type . Indeed , a

x(t  it —i ) = Ii (t , i) comparison of our results to those presented in

1=0 (161 shows that  equation s (24) , (25) , ( 12a) ,  (l2b )
arc  precisely equations (16) , (13’), (15) , (14 ) of
(16] if the following change of notation is macic .we get a recursive formula for the estImate ,

h (t+1 ,t )  <—> K (t ) (or h (t+l , t )  <~> 

~) 
‘ axy g ~ xy

~(t÷11t) = h (t+1 .i)xy 
Nt 

<—> Hr ( t )  
‘ < >  <‘> 

~
‘t ‘ Itn

= ‘F — ii (t÷ 1,t )  h (t , i) y~ We see therefore that the Q~amdrasekhar equa—
- ~ t XY 0 XY tions are ma t a r a lly Induced by the Levinson—type j

- recursions when the covariance matrices have a
+ h (t+i , t )  

~
‘ 1 structure . Eurthermore , the parameter  C~t specia

which appears in the Chandrasekhar a lgori thm can
= }‘

t~
(t J t—i )  i - h  (t+1 ,t)  now be shorn to have a r eaning in terms of Q (or

xy a), the displacement rank of U (see also 15,9 ] ) .

• — h,~~(t +l~ t) H~~~
(t ct_ i) )  (21) To see this , let us recall that  for a t in e—

invariant state—space model

the usual Kalman—filter equation for the state es-
timates . Note that only h5~(t-i-1 ,t) is required }i~’~~~under the state—space structure assumptions~ j

i’ ~ > S

In the following, we shall assume that F and 
Tj,j fmin~ + I 1 S (26)

H are conm~tant . By considering the defining

equat ions (1) , (2) of h ( , ) and h xy(~~~), it 
H~ 1

(F5 1 ) H ’  1 <  5

is easy to see that  assuapt ion (19) luads to where

h( t , s) = lflt (t ,s) • 

it
1 

= EX~X

X)’ and
it

There for e , from the d e f i n i t i on s  (13) , (14) of 
~~ 

1+1 1
F’ 4- Q . ( 2 7)

a~ d c1, it fo l lows t ha t  so that , 
—

= fl1~t i(g — a )  H ’— r~~~1
C Hi , (22)

m ta j  I



______ 

-~~- 
- - - - c-- 

‘
~~

‘ -.“
~
=--

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

r Wri ting  this in matrix fui-i~ gives Final ly ,  wo sliotilci note t hat  th~~ u d i : ; em- e to—
N t imum o results huve chm ,q o cent inuous—t m u  t i t u s  t o ’ ;

Sn o ~~ — it
0

) 0’ (28) pt ’csontcd in [13] for the i~cnora 1 prob lt--u of so lv—
whoro t u g  81)1110 integi’a I eciuat loin ; , and In 1121 den I I  iug

sped ric~t l1 y wi th  thu oat  tmim:t t ioit p~oble - I i i  f a ct
it was those res;uj is that 1,1-nv ided the 1~ m t is to

an extended lflOtIv .it ion for the d i s c ro to—t i umm o Lmns I y s i~ prc-—
0 , obsorv a b ihity SOfl tCcI hero .

Ina t i-ix .

III Appendix A

Let us take for s im pl ic i ty  the scalar caso ( I . e . ,  Proo f of the Levinson—Typ e Al gor i thm
p = 1 , r 1 ~ 

scalar) .  Assuming that the system is for the Joint (x , y )  Process
obses-vabl~ , 0 will be a Lull rank matrix, and
thcrc-Iox-e The defining equation for h~ was given as

a = rank &R
N 

= ra nk (it
1 

— it
0

) . in rn— i I xy zy 1
= [r~~ 0 ... r,5 ,~.1j (A l)

Now the Chct ndr asokhar equations involvo a pararn o— Theroforo ,
ter a0 defined as

— -~ -i .[o hm J n
hl

— rank — it
0

) — F1t011’(Hut 0H’ + I )  Hit
0
r1] 

xy 

ro . . .o  ... oi rr r
and since the second term in the brackets is of I in 1 I , 0~ 0 0 ,tn
- ~- 1  ‘- lO b  I I .  l i - i

i xyj 
R
n_i :

a- i < a
0 < a + i . L° - J Lr~,o

= [o,r’~’0 ., ,  r~~
’
~~ 1] + ~~~~ ... o]

6. Conclusions

~1e have shown how recursive solutions can be + (h~~ P
m 1

E) ~~ 
~m i]

obtained for the optimal predictor with .~ covariance
(or fnpu t—outpu t )  data , whether or not state—spaco I xy xy 1 1 xy xy r n — l i
raodc, .s arc avai lable .  The complexity of these al; L’mf1 ~ 

m
i - m i  

— [r~~+i ‘~~rn ~~~ j
gorithes depends on a measure a of the distanco
fro :~ stationarity of the signal and observed pro— r 1 ~ m— l ‘i i  nm—i l
ccsscs . + 

~~~~ 
... oj + (i~~ z~ ~1L°’~ J

A similai- approach makes it possible to derive where
a recurs ive solut ion for the optimal (filter)
smoother H,~ ,. Tho details wil l  not be presoutcd rr 1
here (see (101 for a par t ia l  trcatmeiit) ,  but it is i m u  0 ,0
i; :portant to note that  hi~~ can be computed in = 

~ 
h~~Jj

0(cm~~~) operations , instead of 0(N 3) required for I r
a direct solution of equation (4). L m ,0

In the special case wherc the processes are This can be rewritten as
kno.ii to cone from a constant—parameter  state—
space model , time d istance from stationarity a r in 1 in nm+1 m fi 0 ... 0
coincides with  a parameter describing the co :nputa— ~0 h~~~j  

U = h U — E~11 ~m_ 1’  (A 2 )
tioaai reductions obtainable by using the pr evi— 10
ously known (161 Chandrasekhar equations . More— where

over , these general recursions reduce natu ra l ly  to rr 0 1
the Chandraseldiar  equa t ions  in this  and a c t u a l l y  r m 

-~~ 0 , 0 I r x~ ~~
-

also In Lone rore general cases . Note , for exam— E~ ~ l~0 hxyJ l : rn-i I + ~
r
~ +j , p 1 ~

pie , tha t  we -:adc no asvurvp t t on  on Q and our I r 
P E

de r i v at i on  holds when it i.- t ine var ying . :;otc L in ,0
sit ;o t im.n t our approach .lL- .~~i5 to a dc r iva  t ion of
t:;c Cin~ rdrasekiuai’ e u ~ tLors that does not nention Define auxi l iary  quant i t ies  Am , ~m as
the h iccat i  equat ions , tim ich  W a ;  a t  the he.irt  of
the origiesui derivation (~~ I. Actually, time gcn— 0
era 1 t i n e— v a r  v lu i : ~ U iccat i c ’quat inn can l ao  he in— in ~~ :
bed ded in t h e  f ranework  presented here (see 117]). H A = (A-i )

N
in



Um ~ L; s t b1u~~ row of A” is the i d e n t i t y  and
[r0,0 

01
r~ o l  N = H — F’N

1
C , M ~-~I . (A l l )vn+l m m n u m 0 I

= rn—I (A-I ) L 0 eJ I l
r u 

~~
.

I ~ I To veri ly ( A R ) ,  (A!)) , mm - c- prernultiply the equations
L J by ~ r t4 ~~ and check tha t  the right—hand sick, of

these equ at ~un~: satisfy the defining equat ions
> u t c  tha t fi-o-u (A2 )  a~d (A4) it follows that (A3) (~ -1)

[o h’1’ ] + E ~
_l
B
in (A5) Finall y,  It rema ins to show that ~, = Fr,, .

XY Tn Tn The proof is lengthy and shall be omitted . It can

1. xy —i be found In [10 11].
an d  ~r mm ’ the d o f in i n ~ equat ion , h xv = r1 0r0 0.
L’s in.; a a irm~~ar :.piuroach , the recur ions foi Am ,

are dei-ived . Appendix B

[° 1 r 0 0  . . .  n-~~ ,÷~~] [0 ~ r~i An Alternative form of the Recursion for It (t + l t)
rn -i-i . . XY

I I - : un I + I ~~~~ I
[A”J ~~

rm+l  
U J Lo 1) [AmJ hxy (tI

~
1#t) N~ (h~~

u,t_I) —

0 I 0 . (r4~ _i — HUt 1M;
1
1E~~ 1H )

+ F , (AG) 
—1

= h ( t ,t — l)  Nt i  
— Et Mt E~_ 1H’

where — h (t , t — l)  HE H ’ E’ H’
xy t—l t— l t-l

u m  0I 0,0
Fr {o A1:]1 +

Lr rn .~i ,o
- = In (t , t— l)  ~
0 

xy t— l

p.r.+i[R
fll ] 

~ ••i 
— • P (A7) 

+ t t ( t — 1  ~~~~~~~~~~~~ 
+ -~~)

0 Mt 1E~

k ~ 1r . - .  r 1 ~~ ~~
h
~~

(t
~
t_i) iiEt l ~

t
lE~_l~

f ’
— 

~ 
rn-i-i,0 m+1,mJ

combining the defining equations of ATn
, Rn and = h

~~~
(t

~
t_ i)  Nt_ i

(A6 ) ,  (A7) gi ves

mi-i [o 1 [~m1 —i 
— (i~ +h

~~
(t ,t_l)uE

t1)~c
’
1
E

1
n’

A = L mj 

- L J M~ ~ A0 = I . (A R )  
- ,A 0 In Appond i~ C we ch~ll show tha

N 1 = N~ — 

~~m 
— l0 , P l  M

m) ~I~
1

F’ = (r 
— h

~~
(t
~
t_l) ii ) 

~~~~
therefore

= N - C M 1F’ , N r . (A 9) -1
n n un rc 0 0 , 0 ii (t-s-l , t )  N h (t t- 1) N — 11. . L ’  I I ’

~tmero xy t xy t — l  t — l  c -- i

c C~ k — to ,p I Mn r n  0 Tn

Al ‘-o Appe n d ix C

— L rij ~;
1C 

‘ 
(I 0 . - .  0] The hecu r h i o m i  of E

(M O ) A. a fir . I ~~t e 1 u  , . i ;  m !  r L m - v  t im

L 
- - - - - - -~~~~ 
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- —~~~~ - — “ ~~~~~~~~ ‘‘-~. ~~~~~~~~~ .— _ ___ .~~~~,-~ .~~~-,-,,r-- ~~~~~ ~~ . -- - -‘~~

= — h~~~(t , t-1) ~) h (t— l ,s) 
- 

[r~~~, 0  ir~~ >~] = i’[r~~0 i~~~,E] (C5)

0 < s < t — 2  (Cl)
Using (Cl) ,  (C4 ) , mmd (C5) , we can rewrite (C3) as

From the d e ft n i n g  equat ion  (1) tel- h , we know
that m

1 0

(11
t 

— [it
t;1

,ø]) Rt i  Et = Er 
— h

~~~
(t , t~~~) ~] h

t l  

rt~i o  

Pt 2
~

1
= [r~~ 0 u  ._

. r~~ti ] 
- Er~~ i o  ... r i , t 2,A1] 

+ (F - h ( t ,t-1) H) [r~~ 0
wh erm -

= (F 
— h (t ,t—1 ) E . (C6 )

I r xy t_i

t—l
A1 = [h ,o]~

Lrt ,  
~~~~~~~

Using

r~~’ —
t , s — 

t—l ,s
gives

(h~ y - [h~;
’~o]) Rt 1

= ( F _ I ) {z -~~~~ 0 1 . .
~~ 

r
~~ 1,t_ 2 ,Aj ] 

- -

[o , ..., o ,
~~]

where is whatover is necessary to s a t i sfy  the
last equat ion . iicr.co,

h t 
— Ih

t i
,O1 = (F — I ) E h

t 
o]xy (~ xy J xy

4- hxy
(t ,t.~i)[_h

t h
I] (C2)

Us 1n~’ h(t,s) = Fir (t,s ) ,  we can rewrite (C2 ) as
xy

= (r 
— h xy

(t
~

t_ i)  ~) [ir
t~~ o]

+ [0 ... 0 ,h (t , t— l)
I. xy

which proves (Cl).

Lct us rewrite the de f in i t i on  (13) of E
t 

as

[r ~~~ 
0

E _ I 0,h t 1 : pt_ 2
~t L xYJ

— h
~ y

(t ,t_1)[r
~~o 

+ 
~~~~~~~~~~~~~ 

.

(c3)
It is aino tru e that

,~~ ~—~
} = h ( [r~~~, p~~ ::] (ciI)
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